User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
start [2025/10/17 08:01] – [Année 2025-2026] tserafinistart [2026/02/06 10:39] (current) – [Année 2025-2026] mlaoufi
Line 3: Line 3:
 Le colloquium a lieu un lundi sur deux (approximativement) en salle W à 16h. Le colloquium a lieu un lundi sur deux (approximativement) en salle W à 16h.
  
-Organisateur : [[https://www.math.ens.psl.eu/~tserafini/|Thomas Serafini]]+Organisateurs : [[https://www.math.ens.psl.eu/~tserafini/|Thomas Serafini]] et [[https://www.math.ens.psl.eu/membres/#member-19960-info|Maël Laoufi]].
  
 ==== Année 2025-2026 ==== ==== Année 2025-2026 ====
 +  * Lundi 23/02 : Sylvain Chabredier. **TBA**
  
-  * Lundi 20/10 Florent Fougères. **Aspects statistiques du théorème de Lanford**\\ //+  * Lundi 09/02 Dorra Hamza. **Introduction à la théorie des nœuds à travers le polynôme de Jones et l’homologie de Khovanov**\\ // 
 +En 2000, Mikhail Khovanov a initié ce que l’on appelle parfois la seconde révolution dans l’étude des invariants de nœuds, la première étant l’introduction du polynôme de Jones à la fin du dix-huitième siècle. Le but de cet exposé est d’introduire la théorie des nœuds : ce que signifie être un invariant de nœuds, pourquoi ces objets sont importants, et comment on peut les construire. Nous expliquerons ensuite le principe de catégorisation d’un invariant, en prenant comme exemple  l’homologie de Khovanov, qui raffine le polynôme de Jones. Si le temps le permet, nous évoquerons également quelques problèmes de recherche contemporains liés à ces invariants.//
  
-  * En théorie cinétique, le théorème de Lanford est une étape cruciale pour obtenir les équations de la mécanique des fluides à partir des équations microscopiques des gaz, comme suggéré par le 6ème des problèmes de Hilbert pour le siècle dernier. Ce théorème consiste à utiliser une échelle mésoscopique intermédiaire, et à dériver l'équation de Boltzmann dans cette limite d'échelle. Récemment, un papier conséquent a exposé des méthodes très fines pour résoudre partiallement ce problème en temps long, suscitant un regain d'intérêt pour ce domaine.+  * Lundi 26/12 : Alexis Metz-Donnadieu. **Probabilité et combinatoire du profil vertical des arbres étiquetés**\\ // 
 +Les modèles d’arbres plans étiquetés (c’est à dire des arbres plans finis dont les sommets portent des étiquettes entières) et plus généralement les modèles de processus de branchement spatiaux sont aujourd’hui devenus incontournables en probabilité et en combinatoire (marche aléatoires branchantes, superprocessus, modèles de particules...). Un enjeu important pour étudier ces arbres étiquetés est de comprendre le profil vertical qui correspond au processus comptant pour chaque entier k le nombre de sommets d’étiquette k. Il correspond grosso modo à la mesure d’occupation du processus branchant encodé par l’arbre. Nous nous proposons de faire un petit tour d’horizon non exhaustif de résultats anciens et nouveaux concernant les propriétés probabilistes du profil vertical (limite d’échelle, propriété de Markov, dénombrement…).// 
 + 
 +  * Lundi 12/01 : Rémi Guénet. **Cycles limites et géométrie o-minimale**\\ // 
 +Les cycles limites d'un champ de vecteurs planaire sont les lieux auxquels le champ de vecteur change de comportement topologique. Ainsi, le nombre de ces cycles limites peut être vu comme une mesure de la complexité topologique du champ de vecteurs en question. Étant donné une famille de champs de vecteurs, on peut alors se demander s'il existe une borne uniforme pour le nombre de leurs cycles limites. En particulier, la seconde partie du 16ème problème de Hilbert demande de traiter le cas des familles de champs de vecteurs polynomiaux de degré borné. Dans cet exposé, on s'intéressera au lien entre ce type de questions et la géométrie o-minimale, qui peut être pensé comme une généralisation de la géométrie analytique réelle.// 
 + 
 +  * Lundi 08/12 : Maël Laoufi. **Identification partielle dans les modèles logit et problème des moments**\\ // 
 +Le modèle logit est un modèle relativement standard en statistiques, qui permet d’estimer le rôle que jouent des caractéristiques observables dans la réalisation d’une variable binaire (achat de biens, emploi/chômage …). Une variante de ce modèle intègre des effets fixes individuels, modélisant une propension individuelle aléatoire, plus ou moins forte, pour l’une ou l’autre des options possibles du choix binaire. En présence des ces effets fixes individuels, l’effet moyen d’une variable sur la réalisation de la variable d’intérêt binaire ne peut plus être parfaitement estimé. Dans cette présentation, nous verrons qu’il est néanmoins possible d’estimer l’intervalle des valeurs possibles de ce paramètre, un exemple d’identification partielle en statistiques. La technique d’estimation repose sur le problème des moments : étant donnés les T premiers moments d’une variable aléatoire à valeurs dans [0, 1], quelles sont les valeurs possibles de son (T + 1)-ième moment ?// 
 + 
 +  * Lundi 17/11 : Samuel Lerbet. **Comment comprendre les modules projectifs ?**\\ // 
 +La théorie des modules projectifs est souvent abordée sous l'angle de l'algèbre homologique, pour les buts de laquelle la connaissance de quelques propriétés formelles de ces objets est souvent suffisante pour travailler. Pourtant, ils ont également une interprétation géométrique : un module projectif (de type fini) sur un anneau consiste essentiellement en la donnée d'un fibré vectoriel sur l'objet géométrique que la géométrie algébrique associe à cet anneau. De ce point de vue, plusieurs questions naturelles, inspirées par la topologie, se manifestent : à quelle condition un module projectif a-t-il « une section continue qui ne s'annule pas » ? La collection des modules projectifs sur un anneau est-elle « invariante par homotopie » en un sens convenable ? Peut-on arranger la collection des fibrés vectoriels en un groupe abélien, comme on le fait en K-théorie topologique ?  
 + 
 +Dans cet exposé, nous verrons une manière (à laquelle l'orateur est partial) de donner un sens précis à la question posée par le titre, et nous expliquerons quelques résultats dont on dispose pour y répondre.// 
 + 
 +  * Lundi 20/10 : Florent Fougères. **Aspects statistiques du théorème de Lanford**\\ // 
 +En théorie cinétique, le théorème de Lanford est une étape cruciale pour obtenir les équations de la mécanique des fluides à partir des équations microscopiques des gaz, comme suggéré par le 6ème des problèmes de Hilbert pour le siècle dernier. Ce théorème consiste à utiliser une échelle mésoscopique intermédiaire, et à dériver l'équation de Boltzmann dans cette limite d'échelle. Récemment, un papier conséquent a exposé des méthodes très fines pour résoudre partiallement ce problème en temps long, suscitant un regain d'intérêt pour ce domaine.
  
 Dans cet exposé, on s'intéressera surtout aux modèles utilisés en expliquant les difficultés qu'ils font apparaître, ainsi qu'aux aspects statistiques de cette dérivation - notamment dans un cadre linéaire menant à l'équation de Rayleigh–Boltzmann pour laquelle la dérivation complète du microscopique au macroscopique a pu être prouvée.// Dans cet exposé, on s'intéressera surtout aux modèles utilisés en expliquant les difficultés qu'ils font apparaître, ainsi qu'aux aspects statistiques de cette dérivation - notamment dans un cadre linéaire menant à l'équation de Rayleigh–Boltzmann pour laquelle la dérivation complète du microscopique au macroscopique a pu être prouvée.//
start.1760688065.txt.gz · Last modified: 2025/10/17 08:01 by tserafini

Donate Powered by PHP Valid HTML5 Valid CSS Run on Debian Driven by DokuWiki